584 research outputs found

    Inelastic Diffraction and Spectroscopy of Very Weakly Bound Clusters

    Full text link
    We study the coherent inelastic diffraction of very weakly bound two body clusters from a material transmission grating. We show that internal transitions of the clusters can lead to new separate peaks in the diffraction pattern whose angular positions determine the excitation energies. Using a quantum mechanical approach to few body scattering theory we determine the relative peak intensities for the diffraction of the van der Waals dimers (D_2)_2 and H_2-D_2. Based on the results for these realistic examples we discuss the possible applications and experimental challenges of this coherent inelastic diffraction technique.Comment: 15 pages + 5 figures. J. Phys. B (in press

    Gamma-ray emission from dark matter wakes of recoiled black holes

    Full text link
    A new scenario for the emission of high-energy gamma-rays from dark matter annihilation around massive black holes is presented. A black hole can leave its parent halo, by means of gravitational radiation recoil, in a merger event or in the asymmetric collapse of its progenitor star. A recoiled black hole which moves on an almost-radial orbit outside the virial radius of its central halo, in the cold dark matter background, reaches its apapsis in a finite time. Near or at the apapsis passage, a high-density wake extending over a large radius of influence, forms around the black hole. It is shown that significant gamma-ray emission can result from the enhancement of neutralino annihilation in these wakes. At its apapsis passage, a black hole is shown to produce a flash of high-energy gamma-rays whose duration is determined by the mass of the black hole and the redshift at which it is ejected. The ensemble of such black holes in the Hubble volume is shown to produce a diffuse high-energy gamma-ray background whose magnitude is compared to the diffuse emission from dark matter haloes alone.Comment: version to appear in Astrophysical Journal letters (labels on Fig. 3 corrected

    Good rotations

    Full text link
    Numerical integrations in celestial mechanics often involve the repeated computation of a rotation with a constant angle. A direct evaluation of these rotations yields a linear drift of the distance to the origin. This is due to roundoff in the representation of the sine s and cosine c of the angle theta. In a computer, one generally gets c^2 + s^2 1, resulting in a mapping that is slightly contracting or expanding. In the present paper we present a method to find pairs of representable real numbers s and c such that c^2 + s^2 is as close to 1 as possible. We show that this results in a drastic decrease of the systematic error, making it negligible compared to the random error of other operations. We also verify that this approach gives good results in a realistic celestial mechanics integration.Comment: 24 pages, 3 figure

    Gravitational wave forms for a three-body system in Lagrange's orbit: parameter determinations and a binary source test

    Full text link
    Continuing work initiated in an earlier publication [Torigoe et al. Phys. Rev. Lett. {\bf 102}, 251101 (2009)], gravitational wave forms for a three-body system in Lagrange's orbit are considered especially in an analytic method. First, we derive an expression of the three-body wave forms at the mass quadrupole, octupole and current quadrupole orders. By using the expressions, we solve a gravitational-wave {\it inverse} problem of determining the source parameters to this particular configuration (three masses, a distance of the source to an observer, and the orbital inclination angle to the line of sight) through observations of the gravitational wave forms alone. For this purpose, the chirp mass to a three-body system in the particular configuration is expressed in terms of only the mass ratios by deleting initial angle positions. We discuss also whether and how a binary source can be distinguished from a three-body system in Lagrange's orbit or others.Comment: 21 pages, 3 figures, 1 table; text improved, typos corrected; accepted for publication in PR

    A Pre-Protostellar Core in L1551

    Full text link
    Large field surveys of NH3, C2S, 13CO and C18O in the L1551 dark cloud have revealed a prolate, pre-protostellar molecular core (L1551-MC) in a relatively quiescent region to the northwest of the well-known IRS 5 source. The kinetic temperature is measured to be 9K, the total mass is ~2Msun, and the average particle density is 10^4-10^5 cm^(-3). L1551-MC is 2.25' x 1.11' in projection oriented at a position angle of 133deg. The turbulent motions are on the order of the sound speed in the medium and contain 4% of the gravitational energy, E_{grav}, of the core. The angular momentum vector is projected along the major axis of L1551-MC corresponding to a rotational energy of 2.5E-3(sin i)^(-2)|E_{grav}|. The thermal energy constitutes about a third of |E_{grav}| and the virial mass is approximately equal to the total mass. L1551-MC is gravitationally bound and in the absence of strong, ~160 microgauss, magnetic fields will likely contract on a ~0.3 Myr time scale. The line profiles of many molecular species suggest that the cold quiescent interior is surrounded by a dynamic, perhaps infalling envelope which is embedded within the ambient molecular gas of L1551.Comment: 27 pages, 7 figures, ApJ accepte

    The nature of the dense core population in the Pipe Nebula: A survey of NH3, CCS, and HC5N molecular line emission

    Full text link
    Recent extinction studies of the Pipe Nebula (d=130 pc) reveal many cores spanning a range in mass from 0.2 to 20.4 Msun. These dense cores were identified via their high extinction and comprise a starless population in a very early stage of development. Here we present a survey of NH3 (1,1), NH3 (2,2), CCS (2_1,1_0), and HC5N (9,8) emission toward 46 of these cores. An atlas of the 2MASS extinction maps is also presented. In total, we detect 63% of the cores in NH3 (1,1) 22% in NH3 (2,2), 28% in CCS, and 9% in HC5N emission. We find the cores are associated with dense gas (~10^4 cm-3) with 9.5 < T_k < 17 K. Compared to C18O, we find the NH3 linewidths are systematically narrower, implying that the NH3 is tracing the dense component of the gas and that these cores are relatively quiescent. We find no correlation between core linewidth and size. The derived properties of the Pipe cores are similar to cores within other low-mass star-forming regions: the only differences are that the Pipe cores have weaker NH3 emision and most show no current star formation as evidenced by the lack of embedded infrared sources. Such weak NH3 emission could arise due to low column densities and abundances or reduced excitation due to relatively low core volume densities. Either alternative implies that the cores are relatively young. Thus, the Pipe cores represent an excellent sample of dense cores in which to study the initial conditions for star formation and the earliest stages of core formation and evolution.Comment: 35 pages, 10 figures (excluding the appendix). For the complete appendix contact [email protected]. Accepted for publication in ApJ

    Optimized coupling of cold atoms into a fiber using a blue-detuned hollow-beam funnel

    Full text link
    We theoretically investigate the process of coupling cold atoms into the core of a hollow-core photonic-crystal optical fiber using a blue-detuned Laguerre-Gaussian beam. In contrast to the use of a red-detuned Gaussian beam to couple the atoms, the blue-detuned hollow-beam can confine cold atoms to the darkest regions of the beam thereby minimizing shifts in the internal states and making the guide highly robust to heating effects. This single optical beam is used as both a funnel and guide to maximize the number of atoms into the fiber. In the proposed experiment, Rb atoms are loaded into a magneto-optical trap (MOT) above a vertically-oriented optical fiber. We observe a gravito-optical trapping effect for atoms with high orbital momentum around the trap axis, which prevents atoms from coupling to the fiber: these atoms lack the kinetic energy to escape the potential and are thus trapped in the laser funnel indefinitely. We find that by reducing the dipolar force to the point at which the trapping effect just vanishes, it is possible to optimize the coupling of atoms into the fiber. Our simulations predict that by using a low-power (2.5 mW) and far-detuned (300 GHz) Laguerre-Gaussian beam with a 20-{\mu}m radius core hollow-fiber it is possible to couple 11% of the atoms from a MOT 9 mm away from the fiber. When MOT is positioned further away, coupling efficiencies over 50% can be achieved with larger core fibers.Comment: 11 pages, 12 figures, 1 tabl

    Phase-space distribution of unbound dark matter near the Sun

    Get PDF
    We resolve discrepancies in previous analyses of the flow of collisionless dark matter particles in the Sun's gravitational field. We determine the phase-space distribution of the flow both numerically, tracing particle trajectories back in time, and analytically, providing a simple correct relation between the velocity of particles at infinity and at the Earth. We use our results to produce sky maps of the distribution of arrival directions of dark matter particles on Earth at various times of the year. We assume various Maxwellian velocity distributions at infinity describing the standard dark halo and streams of dark matter. We illustrate the formation of a ring, analogous to the Einstein ring, when the Earth is directly downstream of the Sun.Comment: 17 pages, 10 figures (better rendered in ps than pdf

    Rotational quenching rate coefficients for H_2 in collisions with H_2 from 2 to 10,000 K

    Get PDF
    Rate coefficients for rotational transitions in H_2 induced by H_2 impact are presented. Extensive quantum mechanical coupled-channel calculations based on a recently published (H_2)_2 potential energy surface were performed. The potential energy surface used here is presumed to be more reliable than surfaces used in previous work. Rotational transition cross sections with initial levels J <= 8 were computed for collision energies ranging between 0.0001 and 2.5 eV, and the corresponding rate coefficients were calculated for the temperature range 2 < T <10,000 K. In general, agreement with earlier calculations, which were limited to 100-6000 K, is good though discrepancies are found at the lowest and highest temperatures. Low-density-limit cooling functions due to para- and ortho-H_2 collisions are obtained from the collisional rate coefficients. Implications of the new results for non-thermal H_2 rotational distributions in molecular regions are also investigated

    The effect of an emollient containing urea, ceramide NP, and lactate on skin barrier structure and function in older people with dry skin

    Get PDF
    Xerosis affects up to 75% of older people and develops as a result of a skin barrier defect. Emollients are widely used to treat xerosis; however, there is limited understanding of the differences between them and their effects on the skin barrier in older people. This study aimed to compare the effect of a commercially available emollient containing 5% urea, ceramide NP and lactate (test emollient) to an alternative emollient without these additives (control emollient) on the properties of the skin barrier in older people. Two cohorts of 21 volunteers aged 60+ years with dry skin were recruited. The first applied the test emollient to one forearm and no treatment to the other for 28-days. The second compared the test emollient to the control emollient observing the same parameters. Effects on the skin barrier were determined by measuring skin barrier function, hydration, skin surface pH and by analyzing FTIR spectra before and after treatment. A third cohort of 6 young adults was recruited to investigate the effect of a single treatment with the test emollient on the molecular structure of the skin barrier at greater depths by employing the tape-stripping technique. The test emollient hydrated the skin to a significantly greater extent and for a longer period of time compared to the control emollient, an effect associated with a significant elevation of carboxylate groups (a marker of NMF content) within the stratum corneum. Furthermore, the test emollient imparted additional benefits to the structure and function of the skin barrier not exhibited by the control emollient. In conclusion the test emollient addressed the pathological features of xerotic aged skin, supporting its use as first-line therapy for xerotic skin conditions in this population
    corecore